Tao Analysis: Exercise 2.2.1

This is a proof of the associative property of natural number addition. We will show that for any natural numbers $$ a, b, and\, c $$, we have $$ (a+b)+c = a+(b+c) $$.

To show this, let's induct on $$ c $$. First, let's deal with the base case where $$ c=0$$:

$$ c=0 $$Assumed
$$ b+0=b $$Lemma 2.2.2
$$ (a+b)+c=(a+b)+0 $$Substitution
$$ =a+b $$Lemma 2.2.2
$$ =a+(b+0) $$Substitution
Therefore, $$ (a+b)+0=a+(b+0) $$, proving the base case.

Now, the inductive case. Here we are assuming that $$ (a+b)+c=a+(b+c)$$ for some natural number $$ c $$.

$$ (a+b)+(c++)=(c++)+(a+b) $$Commutative property
$$ =(c+(a+b))++ $$Definition of addition
$$ =((a+b)+c)++ $$Commutative property
$$ =(a+(b+c))++ $$Inductive hypothesis
$$ =((b+c)+a)++ $$Commutative property
$$ =((b+c)++)+a $$Definition of addition
$$ =((c+b)++)+a $$Commutative property
$$ =((c++)+b)+a $$Definition of addition
$$ =a+(b+(c++)) $$Commutative property x2
The induction is closed. Therefore, $$ (a+b)+c=a+(b+c) $$ for all natural numbers $$ a, b, and\,c $$.



Comments

Popular posts from this blog

Tao Analysis: Exercise 2.2.2